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Al Hype Or Al Hope: When Will Al Disrupt The

Pharmaceutical Industry?

‘* By Alex Zhavoronkov, PhD, Former Contributor. @ Expert in Al for healthcare and longevity bi... ~ I t E‘ ‘ L I I Y "

* for COGNITIVE WORLD

Apr 30, 2020, 03:56pm EDT
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® This article is more than 4 years old.

In the past decade or so, artificial intelligence has gone from the pages of science fiction
novels to a very real power that has disrupted — or threatens to disrupt — nearly every
process on earth. Al helps our cars, aircraft, and spacecraft navigate, offers you movie

suggestions on Netflix, and facilitates dozens of other disruptions, both grand and mundane.

Why, then, has the pharmaceutical industry — an industry which, literally, has life and death —— SEARCH Fn RT u N E SUBSCRIBE NOW SIGNIN

in its hands — shown, relatively speaking, almost no sign of disruption, despite ready access
to computers and computer tools, such as AI? Experts suggest that the pharmaceutical HOME NEWS FORTUNE 500 TECH FINANCE LEADERSHIP LIFESTYLE MULTIMEDIA

industrv remains one of the most inefficient indnstries. a last holdont asainst technolagical
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Will Al ever cure cancer?

The mudrbiiton-slalkax Al in Small-Molecule Drug Discovery: A
HYPE? race to bring the first Al- Coming Wave? > 4

discovered drug tO market By Madura Jayatunga, Wen Xie, Ludwig Ruder, Ulrik Schulze,and Chris Meier

BY ERIKA FRY ARTICLE  MARCH 24, 2022
April 3, 2025 at 6:00 AM EDT 0:8

( ARTIFICIAL INTELLIGENCE]

Artificial intelligence-enabled drug discovery holds the promise of dramatically changing
pharmaceutical R&D. By improving productivity, broadening molecular diversity, and
improving chances of clinical success, Al-native companies are already making a mark on
the industry.
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Recursion’s automated high throughput wet lab runs over 2 million experiments every week, allowing the Company to generate







How to improve R&D productivity:
the pharmaceutical industry's grand challenge (Paul, et.al)
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Simplified and updated
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Why 90% of clinical drug development fails and how to improve it?
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https://pmc.ncbhi.nlm.nih.gov/articles/PMC9293739/



https://pmc.ncbi.nlm.nih.gov/articles/PMC9293739/

Key facts about drug discovery and development

We need:

. Drug discovery is too risky

| | 1. New and better therapeutics targets.
(95%-+ fallure rate for discovery programs).

2. Better and safer molecules that are cheap to

. Failures are very expensive.
produce.

. Insufficient understanding of disease

biology results In target selection
with low Biological Relevance. 4. Shorter and cheaper development cycles.

3. Better Biomarker selection strategies.

. It take 10-12 years to deliver a new drug
from program inception to the market
launch.

. Most ‘low hanging fruit’ has been already
collected.
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Nobel Prizes & laureates About Stories
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THE ROYAL SWEDISH ACADEMY OF SCIENCES

9 October 2024

The Royal Swedish Academy of Sciences has
2024

with one half to

David Baker -
University of Washington, Seattle, WA, USA
Howard Hughes Medical Institute, USA

“for computational protein design”
and the other half jointly to

Demis Hassabis -
Google DeepMind, London, UK

John Jumper =
Google DeepMind, London, UK

“for protein structure prediction”

Educational Ever

Nobel Prize in Physics 2024
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Nobel prizes for Chemistry and Physics
were awarded to Al pioneers in 2024!

0

Nobel Prizes & laureates About Stories Educational Events & museums Q

John J. Hopfield

Geoffrey Hinton

The Nobel Prize in Physics 2024 was awarded
jointly to John J. Hopfield and Geoffrey Hinton "for
foundational discoveries and inventions that
enable machine learning with artificial neural
networks"
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AI/ML Deals with Life Sciences Gompanies
Deals with value >$200Mn in 2024

Source: IQVIA Pharma Deals, Jan 2025.

Drug discovery
5 deals

$5492 M

Drug design
5 deals
$3,161M

Target
identification
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$1745 M

$1,238 M

$1,065 M

$1,035 M

$409 M
$1,050 M
$674 M
$550 M
$512 M

$375 M

$550 M
$508 M

As of June 2023, more than $18 billion had poured into
some 200 “Al-first” biotechs, and by January 2024, at least
75 drugs or vaccines from those companies had entered
clinical trials, according to Boston Consulting Group.

Citeline, a pharmaceutical market research firm,
meanwhile, has counted 446 financing rounds totaling
$30.6 billion in the Al-driven life sciences space since
2020.

Biotechs are applying AI and machine learning to drug
development, potentially creating dozens of new medicines
and a $50 billion market over the next decade (published
in 2022).

https://www.bcg.com/publications/2023/unlocking-the-potential-of-ai-in-drug-discovery

https://www.morganstanley.com/ideas/ai-drug-discovery?utm source=chatqpt.com



https://fortune.com/company/boston-consulting-group/
https://www.bcg.com/publications/2023/unlocking-the-potential-of-ai-in-drug-discovery
https://www.morganstanley.com/ideas/ai-drug-discovery?utm_source=chatgpt.com

TechBio already making impact

For instance, companies like Insilico Medicine, Recursion, and
Exscientia have compressed the discovery phase from the industry-
standard 2.5 to 4 years (40-50 months) down to 9 to 18 months in
some cases.

According to a recently published benchmark, Insilico Medicine
averages 12-18 months per program, testing only 60-200 molecules,
while Recursion advances candidates in 18 months with fewer than
200 molecules per program.

Exscientia, which merged with Recursion, claims to have shortened its k /

timeline from four to five years to just 12 to 18 months, screening
150-250 molecules — a notable contrast to traditional methods that
sometimes require testing 3,000-5,000 molecules per program.

~

Shorter timelines &
fewer experiments

Significant cost
savings & faster
access for patients

https://www.biopharmatrend.com/post/1137-insilico-medicine-reports-preclinical-benchmarks-for-ai-designed-therapeutics/
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Using Al, MIT researchers identify a new class of
antibiotic candidates

These compounds can kill methicillin-resistant Staphylococcus aureus
(MRSA), a bacterium that causes deadly infections.

Anne Trafton | MIT News
December 20,2023

SPRAVY TV & OPERATORI CYBERGAME Al MOBILMANIA PREMIOVE CITANIE Q
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Toto je prvy liek vyvinuty umelou
inteligenciu. Bude sa testovat na ludoch

i ;*Reuters

drug development

By Reuters

April 11, 2025 12:39 AM GMT+2 - Updated 5 days ago

Zdroj: Unsplash, uprava: redakcia

Slazi na lie€bu plicnej fibrézy.

ﬂ Prvy liek plne vytvoreny umelou inteligenciou (Al) sa dostava do klinickych skusok na
Mria Dolniakové 1\ o,ch Vyvinul ho biotechnologicky startup Insilico Medicine so sidlom v Hongkongu a

New Yorku. O novinke informoval portal CNBC.

US FDA to phase out animal testing in

o
Neuroscience #
News.com \

Al Revolutionizes Drug Discovery for Rare Diseases
. September 25, 2024

000000

Summary: Al tool has identified drug candidates for over 17,000

Neuroscience Videos

rare and untreated diseases, offering hope for millions of affected
individuals. This tool, TXGNN, stands out as the first model
developed specifically to repurpose existing drugs for neglected

conditions.
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Umela inteligencia urychl’uje objavovanie novych liekov. Ich
ucinnost’ je zatial’ otazna

NajcitanejSie 24h

Desat’ najdrahsich
stavieb sveta. Ani
miliardy nezarucuju, Ze

aj vkusnych

Jadro svetového finanéného systému je
naruSené. Status bezpegného pristavu
prebera euro

Nédej na lacnejsie hypotéky priniesla
stratu. O peniaze Fudi obrali éoraz
drahsie nehnutelnosti







The Landscape of
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- List of ranked target candidates:
both first-in-class, best-in-class

* Indication Expansion
based on omics and text data

» Omics- and text-based evidence
confirming target-disease associations

* |ldentification of active compounds
for a given disease, disease subtype
or condition

- Pathway Analysis

« Chat with a Transformer-Based Biomedical
Knowledge Graph using ChatPandaGPT

Core Features

Sophisticated Al tool enables the system's biology * Target Identification and Evaluation
platform to address challenges in target discovery, * OMICs Data Analysis
biomarker identification, and computational repurposing * Pathway Analysis

- Target Attention and Trend Prediction
- Gene-disease Association Prediction

Version 4.0 New Features
« ChatPandaGPT — Large Language Model for Target Discovery
* Indication Prioritization
» Transformer-based knowledge graph
« Cross-dataset Comparison and Data harmonization
» Genetic Data and Evidence Exploration



PandaOmics allows scientists to quickly and easily pick the Best Target
for their organization with their data

‘Panda’Omic:
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http://drive.google.com/file/d/1okaaiGJKtqP71MM2qbKudAWNPhh7NRrA/view
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Structure-based drug discovery

"Flow chart for structure based drug design" by
Laozhengzz, via Wikimedia Commons (CC BY-SA


https://commons.wikimedia.org/wiki/File:Flow_chart_for_structure_based_drug_design.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
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Biology42

Generative
Biologics

Select the type of biologic

and define your goal

Biologics
Proteins

Antibodies

Nanobodies

Workflows

Generation
Optimization

Screening

Unlock the power of Novel Biologics

Engineering with Al

GENERATIVE ALGORITHMS

Graph-based
Al

Properties
Optimization

Activity and
Affinity

Developability
Properties

LLMS Diffusion
Models

Computational
Biology Approaches

3D Positioning

Energy
Calculation

Insilico
Medicine

Fine-tuned Models

Multiparameter optimization based
on user-provided data

Output

De novo designed binders
for your target in 3D ranked
by reward values

Optimized Biologics with
improved binding affinity
and developability properties

The users biologics
evaluated against
the target of interest

All generated and optimized
biologics belong to the user.







INSILICO MEDICINE'S PHARMA.AI PLATFORM POWERS
DRUG R&D ACCELERATION AND COST REDUCTION
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TNIK Discovery and Development

Project Start
2019

2019 2019 2020 2020
Biology Al Ha'ﬂzgksssﬂeﬁ%mg Chemistry Al inClinico
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Target TNIK Synthesized Indication
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Indications
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Cost / Success
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Technology Development Phase 2014-2019

v Developed Generative Al for Biology (Published papers and patents)

v Developed PandaOmics (commercially available since 2019,
limited-time free access, hundreds of KOL users, multiple application
papers, >20 Al models, and >60 target discovery approaches)

v Developed Generative Al for Chemistry (Published papers and
patents)
v Published Generative Tensorial Reinforcement Learning model
(GENTRL)
Nature Biotechnology, 2019
v Developed Chemistry42 (commercially-available since 2020,

multiple top 20 pharma companies as users,
limited-time free

access, >42 generative models, >500 predictive
models)

v Developed
pharma)

Predictor of Clinical Outcomes (validated pilots with

./ MNMiiltinle Pilaote and Praoiecte with Pharmaceiitical comnanieac

February 2021
Lung Fibrosis |68/ \&| |3/ \&
Preclinical Candidate

insilico.com/blog/pcc
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TNIK-knock down

Inhibition of EMT, FMT
and fibrotic markers in cells

A549

MRC-5 " )
cell line

cell line *

Primary human
lung fibroblasts
3 IPF + 3 healthy donors

Primary human )
bronchial epithelial cells
3 IPF + 3 healthy donors
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LPS-induced acute °

lung injury mouse model QJ:\

Monotherapy study °

Bleomycin-induced o
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Monotherapy study o

Combination study
of INS018_ 055 and pirfenidone
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Bleomycin-induced
lung fibrosis rat model
Monotherapy study

Kidney fibrosis — Oral ©§ &

——

Skin fibrosis — Topical

UUO-induced kidney
fibrosis mouse model
Monotherapy study

Bleomycin-induced
skin fibrosis rat model
Monotherapy study

August 2021

Kidney Fibrosis
Preclinical Candidate
insilico.com/blog/pcc_kidney

g 2022
Clinical Trials

Phase O Phase 1
Completed Completed April 2023
April 2022 insilico.com/phasel
Australia New Zealand @
8 Healthy o 78 healthy volunteers
volunteers
China Q
48 healthy volunteers
! q? 2022
~_ LifeStar1:

3

Robotics Lab

Translational research
@ NS001-055 study
on aging & age-related diseases

Q INS001-055 research
on metabolite disorders

July 2023

Lung Fibrosis Inhalation
Preclinical Candidate

Phase 2a

China
71 Patients

Completed
September 2024

Safety

Tolerability

Efficacy trend

US
60 Patients
Ongoing
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How successful are Al-discovered drugs in clinical trials? A first analysis and emerging lessons.
https://www.sciencedirect.com/science/article/pii/S135964462400134X?via%3Dihub




Success rate of Al-discovered drugs

Phase |l trials

N

ca.40%

success rate

&

In line
with historic
industry average

e ——

Potentially massive impact on R&D productivity




Exhibit 1

Al is cutting costs, speeding up processes, and boosting success rates
across 12 use cases in clinical development.

Value drivers from Al and Al effects on clinical development
B Cost efficiency Il Improved speed [ Increase possibility of success
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https://www.youtube.com/watch?v=J_Z-xfmcY6U
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Combine Pharma.Al with Data Generation — Lab-in-the-Loop

In vitro assays

Life Star 1

Robotics Lab

HTS
Compound
Libraries

In vivo assays

Chemistry42

Generate Novel
Molecules

PandaOmics Target Validation

inClinico Discover and Prioritize CRISPR, siRNA, overexpression

Design and Predict Novel Targets

34




s

-~
; :?/. e

?}\\)J é i ‘:,J'}
N

Sample
Intake

Sample pretreatment
(Tissue, blood, plasma)

Sample QC
(mycoplasma, bacteria
and fungi)

PE Envision plate
reading

AR Insilico
w77 Medicine

Six functional robotics modules
For the rapid generation of reproducible and accurate data

Vg
i

[Pz
ﬁf}’,g

aia\r

Nar”

Compound
Management

F

J

Compound dissolving
Compound reformatting
Cherry-picking

Serial dilutions

Cell
Culture

Automated cell culture

CRISPR screening

High Throughput
Screening

Cell-based HTS
Cell-panel sensitivity
Combination screening
Biochemical-based HTS

ADP-Glo, HTRF,
TR-FRET, et al

ozl
High Content
Imaging

> ()

Cell painting assays
Immunofluorescence

ELISA

Next-Generation
Sequencing

WES
Standard mRNAseq
HTS-mRNAseq
Methylation seq (RRBS)




OMICs Data

CRC

Samples
VS

¢¢’?=::§*§1:Z%E

Healthy |~

Control Samples

PandaOmics

Batch Correction

Before After

DE and
Pathway Analysis

OMICs
X

TTTTTTT

Filtering

Small molecules
9—O%—©

Antibodies
@- -

Text

o=
o=
o=

Target 1
Target 2
Target3 S
Target4 B
Target 5

Safety
9- —0

Novelty
9- -Q

Target Identification

KOLs Grants

g

Drugs

()
(U

] X X[ X[

X[ [x]<]
B

Hypothesis Generation
and Targets Selection
for in vitro validation

Robotic Lab

Cell Survival Experiment

SiRNA

Small Molecule
(o)
an

CRC Cell lines

Cell Morphology
Examination

Post-treatment
Transcriptome
Analysis




"I don’t think we're yet at the technological level where any of us should expect these models
to go cure cancer on their own. We will get there, | think. Yes. But for now, | think this can
help researchers be much more productive in what they do."

Sam Altman, CEO, Open Al

1

This is such a fun time for you guys... I'm jealous. You might be within a click or two away
from really being able to understand the meaning of life.™

Jensen Huang, CEO, Nvidia
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